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Motivation for the model

The leading Swampland tower

Distance/Duality Conjecture. [1]

As ΛD → 0 a tower m
(D)
n ∼ |ΛD |αDM1−2αD

D becomes light,
where αD to be a positive constant.

Given the smallness of the vacuum energy of our Universe, it is
reasonable to expect that a tower either is becoming or became
light in the not-so-distant past. [2]
Today mtow = λΛ1/4 ∼ 0.01− 1 eV.
Massive KK gravitons induce Yukawa type deviations from
Newton’s Law which have not been detected and translate into a
bound mtow & 7 meV (1 single LED is allowed).�



�
	[1] D. Lust, E. Palti and C. Vafa ’19

[2] M. Montero, C. Vafa and I. Valenzuela ’22

3



Motivation for the model

The leading Swampland tower

Why do the scale of neutrino masses and dark energy coincide?

The SM in a circle would have AdS vacua and be in tension with
AdS Swampland conjectures unless there are light fermions.[3]

These vacua are avoided in the case of Dirac with the lightest
lighter than 8 meV.

Consider a tower of sterile neutrinos with mtow ∼ 0.01− 1 eV.

Is this even allowed by experiments? What details of the model can
soon/easily be tested?

In this talk: Long Base-Line Neutrino Oscillations.�� ��[3] E.G., L. Ibáñez and I. Valenzuela ’21
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Long Base-Line Neutrino Oscillations

Figure: Example: MINOS experiment
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Long Base-Line Neutrino Oscillations

Figure: Taken from 1906.01739. We need sufficient long distance so neutrino
oscillations are noticeable but not so much they exceed detector precision.
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Long Base-Line Neutrino Oscillations

Description of model

Start with 3 zero mode active neutrinos and bulk sterile Dirac
neutrinos.

L4d = ν ′αi /∂ν
′
α+

∞∑
n=1

{
Nn
α(i /∂ −mn)N ′nα

}
−
∞∑
n=1

{
f nαβ lα

ϕ

v
N

′n
R,β + h.c.

}
We will not need a detailed description of extra dimensions.

Neutrino oscillations experiments require at least as starting point a
standard 3 flavour oscillation with one mass difference roughly 8.6
meV and another roughly 50 meV (differences are actually squared).

We should look for cases with 3 mass eigenstates which are mostly
active, plus small corrections.
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Long Base-Line Neutrino Oscillations

Description of model

L4d = ν ′αi /∂ν
′
α +

∞∑
n=1

{
Nn
α(i /∂ −mn)N ′nα

}
−
∞∑
n=1

{
f nαβ lα

ϕ

v
N

′n
R,β + h.c.

}
After symmetry breaking, the mass term is given by

Lmass = nm0

{
N

′n
R,αN

′
L
n
α + h.c.

}
+ f nαβν

′
αN

′n
R,β.

Notice that the N0
L decouples.

First, we diagonalize the flavour index: ν ′α = Uαaνa, N
′n
α = TαaNa

where U†U = T †T = I, U†f (n)T = f̂ (n).

U is known as the PMNS matrix.

8



Long Base-Line Neutrino Oscillations

Description of model

Lmass = ΨL,aMaΨR,a

ΨL,a = (νL,N
1
La,N

2
La,N

3
La...), ΨR,a = (N0

Ra,N
1
Ra,N

2
Ra,N

3
Ra...)

Ma =


f̂
(0)
a 0 0 0 ...

f̂
(1)
a m1 0 0 ...

f̂
(2)
a 0 m2 0 ...

f̂
(3)
a 0 0 m3 ...
...

...
...

...
. . .


See [4] for original models.�



�
	[4] N. Arkani-Hamed et al ’98, K. Dienes at al ’99, R. Barbieri et al ’00,

H. Davoudiasl et al ’02, P.A.N. Machado et al ’11
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Long Base-Line Neutrino Oscillations

Description of model

Finally, we diagonalize the n index:

Ψn
L,a = (La)nmΨ̂m

L,a Ψn
R,a = (Ra)nmΨ̂m

R,a

L†aMaR = M̂a, where M̂a is a diagonal matrix and La diagonalizes
M†aM̂a.
After diagonalization we find:

Lmass =
∞∑
n=1

λnam0Ψ̂n
L,aΨ̂n

R,a.

ν ′α =
3∑

a=1

Uαaνa =
3∑

a=1

∞∑
n=1

UαaL
(n)
a 0 Ψ̂n

L,a

10



Long Base-Line Neutrino Oscillations

Description of model

Start with neutrinos of flavour α and energy E and look for
neutrinos of flavour β after they have travelled a distance L, so the
quantity we are interested is the probability

Pαβ = P
(
ν ′α → ν ′β

)
= |Aαβ|2

Aαβ =
〈
ν ′β|ν ′α(L)

〉
=

3∑
a=1

UαaU
∗
βa

∞∑
n=0

(
L
(n)
a 0

)2
e i

(λna)
2m2

0L
2E .

We have assumed that neutrinos propagate freely, so we will not
deal with i.e. solar neutrinos where matter effects are important.

We have also assumed that neutrinos are ultra-relativistic.
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Long Base-Line Neutrino Oscillations

Description of model
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Figure: Ln0 for the f nαβ = fαβ case. We define x = R−1Y 〈H〉. Only small x is
allowed. The most active is always the first excited state with
ma = fa − π2

12
f 2
a

m2
0
fa.
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Long Base-Line Neutrino Oscillations

Description of model
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Figure: Example of neutrino oscillation experiment MINOS with 735 km and
GeV (muon) neutrinos. First neutrino is massless. More detailed studies
(1101.0003) find that R−1 & 0.1− 0.5eV .
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Long Base-Line Neutrino Oscillations

Description of model

There are other constraints coming from Cosmology (
∑

mν , Neff)
and Astrophysics (missing energy in Supernovae) so it is important
to understand possible mechanisms that can suppress the mixing.
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Figure: Left: Ln0 for f nαβ = 1
n fαβ . Right: L

n
0 for f nαβ = e−nfαβ . The mostly

active state is no longer the first excited state and the mixing is very
suppressed.
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Long Base-Line Neutrino Oscillations

Description of model
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Figure: Neutrino oscillations at MINOS with 735 km and GeV (muon)
neutrinos. m0 = 0.2 eV. First neutrino is massless.
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Toroidal example: Yukawa couplings

What to expect

Consider dimensional reduction of U(M) SYM theory. Higgs comes
from the gauge boson and the neutrinos from the gaugino.

S =

∫
dp+1w

{
− 1
4g2

TrFMNFMN +
i

2g2
TrλΓMDMλ

}
AM = (Aµ,Ai + Φi ) Φbc

i =
∑
n

Hbc
n i (x)× φbcn i (y)

λab =
∑
n

νabn (x)× ψab
n (y) λca =

∑
n

Nca
n (x)× ψca

n (y)

Y
(n,l ,m)
ijk =

∫
d6yTr

(
ψ
(n)†
i γαφ

(m)
j α ψ

(n)
k

)
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Toroidal example: Yukawa couplings

Semi-Realistic Model

SM particles live on a brane, for example intersecting D6 branes.
Dark tower lives in a different brane which wraps a large cycle along
the extra dimensions.
We need to go beyond toroidal setup, but still study this case since
we can easily compute the Yukawa couplings.
Consider three stacks of Nα α = a, b, c Dp branes wrapping a T 6

with wrapping numbers mI
α, I = 1, 2, 3.

Gauge group is broken to
∏
α U(Nα) by flux:

Fz I z I =
πi

Imτ I


nIa
mI

a
INa×ma 0 0

0 nIb
mI

b

INb×mb
0

0 0 nIc
mI

c
INc×mc


17



Toroidal example: Yukawa couplings

Semi-Realistic Model

SM particles live on a brane, for example intersecting D6 branes.
Dark tower lives in a different brane which wraps a large cycle along
the extra dimensions.
We need to go beyond toroidal setup, but still study this case since
we can easily compute the Yukawa couplings.
Consider three stacks of Nα α = a, b, c Dp branes wrapping a T 6

with wrapping numbers mI
α, I = 1, 2, 3.

Gauge group is broken to
∏
α U(Nα) by flux.

We have a total of Iab = namb −manb fermions in the
bifundamental (Na,Nb).
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Toroidal example: Yukawa couplings

Semi-Realistic Model

Torus identifications as z ∼ z + ζα where ζ1 = 1 and ζ2 = τ .
Boundary conditions on the wavefunctions to guarantee that the
U(M) vector bundle is well defined:

A(z + ζα) = e iω
α
a UαA(z)e−iω

α
a Uα + ig−1

(
∂µe

iωα
a Uα

)
e−iω

α
a Uα

λ(z + ζα) = e iω
α
a Uαλ(z)e−iω

α
a Uα

Solve Dirac equation and Klein-Gordon equation with fluxes and
Wilson lines and compute the integral. See [5-6] for similar
computations.�



�
	[5] D. Cremades, F. Marchesano and L. Ibáñez, ’04

[6] F. Marchesano, P. McGuirk and G. Shiu, ’11
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Toroidal example: Yukawa couplings

Semi-Realistic Model

We find

Y pjk
(2n) =

1
2n

√
(2n)!

(n!)

(
|Iab|
|Ibc |

)n

× Y pjk
(0)

Y pjk
(0) = g

(
2t2
A2

)1/2 ∣∣∣∣ IabIcaIcb

∣∣∣∣1/4 ϑ
[
−
(

j
Ica

+ k
Ibc

)
/Iab

0

]
(0, |IabIbc Ica| τ)

1
2n

√
(2n)!

(n!)
∼ 1

2n
(4πn)1/4√

2πn

(
2n
e

)n (e
n

)n
∼ 1

We find an exponential dependance:

Y pjk
(2n) ∼

(
|Iab|
|Ibc |

)n

Y pjk
(0) = h−nY pjk

(0)

where h is larger than 1.
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Conclusions

Conclusions

Results:

1 One can obtain enough suppression if the KK is slightly larger than
the Y 〈H〉, order on 1 eV.

2 One naturally obtains additional suppression to high KK modes in
semi-realistic compactifications where the Yukawa couplings
decrease with n.

Future Work:

1 Can we explain Short Base-Line anomalies (LSND, MiniBooNE,
MicroBooNE) with a tower MKK ∼ O(eV) sterile neutrinos?[7]

2 Cosmological implications: H0 tension, dark matter [7].�� ��[7] E.G., M. Montero, G. Obied, C. Vafa and I. Valenzuela ’21
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